Computing Mixed Discriminants, Mixed Volumes, and Permanents
نویسندگان
چکیده
منابع مشابه
Computing Mixed Discriminants , Mixed Volumes
We construct a probabilistic polynomial time algorithm that computes the mixed discriminant of given n positive definite n × n matrices within a 2O(n) factor. As a corollary, we show that the permanent of an n×n nonnegative matrix and the mixed volume of n ellipsoids inRn can be computed within a 2O(n) factor by probabilistic polynomial time algorithms. Since every convex body can be approximat...
متن کاملAn efficient tree decomposition method for permanents and mixed discriminants
We present an efficient algorithm to compute permanents, mixed discriminants and hyperdeterminants of structured matrices and multidimensional arrays (tensors). We describe the sparsity structure of an array in terms of a graph, and we assume that its treewidth, denoted as ω, is small. Our algorithm requires Õ(n 2) arithmetic operations to compute permanents, and Õ(n + n 3) for mixed discrimina...
متن کاملMixed Discriminants
The mixed discriminant of n Laurent polynomials in n variables is the irreducible polynomial in the coefficients which vanishes whenever two of the roots coincide. The Cayley trick expresses the mixed discriminant as an A-discriminant. We show that the degree of the mixed discriminant is a piecewise linear function in the Plücker coordinates of a mixed Grassmannian. An explicit degree formula i...
متن کاملPolynomial Time Algorithms to Approximate Permanents and Mixed Discriminants Within a Simply Exponential Factor
We present real, complex, and quaternionic versions of a simple ran-domized polynomial time algorithm to approximate the permanent of a non-negative matrix and, more generally, the mixed discriminant of positive semideenite matrices. The algorithm provides an unbiased estimator, which, with high probability, approximates the true value within a factor of O(c n), where n is the size of the matri...
متن کاملOn the Complexity of Computing Mixed Volumes
This paper gives various (positive and negative) results on the complexity of the problem of computing and approximating mixed volumes of polytopes and more general convex bodies in arbitrary dimension. On the negative side, we present several #P-hardness results that focus on the difference of computing mixed volumes versus computing the volume of polytopes. We show that computing the volume o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 1997
ISSN: 0179-5376
DOI: 10.1007/pl00009316